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A q-deformed completely integrable Bose gas model 

N M Bcgc!icbnut and K K E%!!?%$ 
Department of Mathematics, UMIST, PO Box 88, Sackville Street, Manchester M60 IQD, 
UK 

Received 14 October 1991, in final form 2 April 1992 

Abstrscl. W e  construct the Hamiltonian of a new quantum integrable ‘q-boson’ lattice 
model in 1 + 1 dimensions which has q-bosons as dynamical variables and solve it for its 
energy eigenstates and energy eigenvalues under periodic boundary conditions of finite 
period. This model can be regarded as the q-deformation a f the  integrable lattice Bose gas 
(the quantum lattice nonlinear SchrBdinger (quantum lattice NU)) model. In appropriate 
continuum limits bath of these lattice models became the quantum repulsive NLS model 
(the Bose gas). In the lattice case the distinction between the q-bosons and ordinary bosons 
leads to significant new featureepsrticularly in the energy spectrum for which the q-boson 
lattice model has an optical branch and bound state spectra as well as the (one) acoustic 
branch of the quantum lattice NLS model. It is argued that this sort of distinction is generic 
for discrete systems with a finite number of degrees of freedom as opposed to continuum 
field theories like the Bose gas where quantization by quantum group quantization or by 
canonical quantization leads to the same results. 

Various properties of the q-bosons are given and used. In parlicular a q-boson 
Primakov-Holstein transformation is given which connects the q-boson lattice model with 
the XXZ models of arbitrary spin. 

1. Introduction 

E x  q&?EPdE ixerse  scatte:’.xg zX!hCd (Q:sx) ([!=3! axd re!-ere,,es the:eix) has 
provided fundamental insights into the theory of quantum integrable systems in one 
space and one time (1+ 1) dimensions. The method showed how the Bethe equations 
for a quantum integrable model could be derived, and the system solved for its 
eigenvectors and eigenvalues, by what are essentially algebraic methods without the 
explicit ansatz of the Bethe method. The fonnulatlon of the commutation relations for 
!he elements of the quantum monodromy matrix T!A!(A E C )  in terms ofthe qi~antum 
R-matrix, and the existence of the Yang-Baxter equations for the R-matGx [l-31, has 
led to the realization that the algebra generated by the elements of T(A) has the 
additional structure of a co-algebra [4,5]. Consequentlyat special values of the spectral 
parameter A (notably A = t m  [4]) the elements of T(A) form a Hopf algebra, a 
non-commutative and non-co-commutative Hopf algebra 161. In the context of quantum 
integrable models these Hopf algebras are called ‘quantum groups’ L4-71. In terms of 
duals [ 5 ]  these quantum groups can also be regarded as the deformations (q-deforma- 
tions) of the universal enveloping algebra of an underlying classical Lie group [5-7]. 
Deformation of the loop algebras [ 5 ]  and recently of the affine Lie algebras [ 8 ]  allows 

t On leave from: Steklov Mathematical Institute, Fontanka 27, 191011 St Petersburg, Russia 
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an extension of the deformed algebras to Hopf algebras for arbitrary A, and all of 
these algebras are now loosely called ‘quantum groups’. 

The origins of the deformed algebras can be traced to the theory of Lie admissible 
algebras [9] and Umbral calculus [IO], and these algebras have already appeared in 
hadron physics [ l l l .  The deformed analogue of the harmonic oscillator has already 
been studied in [12]. The representation theory of the quantum groups and deformed 
algebras is currently under intensive investigation, and in particular several realizations 
ofihe q-deformed tieisenberg algebra (a ‘qosciiiator’ aigebra [ijjj  nave been rederived 
[13-161. This q-deformation of the Heisenberg algebra is natural because it is connected 
with the q-deformation of the Lie algebra su(2)+suq(2) [4-71 as we shall show in 
section 2 of this paper. This paper is concerned with the q-deformed bosons satisfying 
this deformed Heisenberg algebra. We shall call them ‘q-bosons’ in here. 

Quantum groups and algebras arise in many problems of current interest in mathe- 
maticai physics (knot theory ji7j,  quanium symmeiries [is:, and see se‘iion 3) ana 
the quantum integrable models are notable examples. However, the important questions 
surely concem their physics. Is the algebraic basis of the quantum groups equivalent 
to the usual canonical quantization, and if not are there physical situations where these 
two altemative modes of quantization make different predictions which can be tested 
by experiment? For the quantum nonlinear (and linear) field theories in 1 + 1 dimensions 
q u a u r u a r w r r  vy  L ~ K  quaciruiri g~uuys I* =quivaicru LV uicii G ~ I L U I I I C ~ ~  quaurrrauori LJJ. 

On the other hand, simple models based on the q-bosons [ 16,19-211 lead to predictions 
different from that of conventional quantum mechanics. 

We point out in this paper that the equivalence of quantum group and canonical 
quantization for the field theories in 1 + 1 actually rests on the continuous nature of 
these field theories. Thus a quantum completely integrable lattice quantized by the 
qi;z~!um gmips cz:: shw ’;p ~ e -  feak:es. We censt:~: a qianvi: cemp!e:e!y 
integrable lattice in 1+1  in this paper which has q-boson fields as its dynamical 
variables and show indeed that it exhibits new features. 

The model is evidently a q-deformation of the quantum nonlinear Schrodinger 
(quantum NLS) model on the lattice [22,23] and the q-deformation introduces new 
features. The quantum NLS model on the lattice [22,23] is the ‘lattice Bose gas’. We 
therefere ca!! the --ode! cnxs:~sted ir? this paper ‘the q-Base gas mode!’. .4s remzrked, 
we show that this q-Bose gas model is intrinsically different from the lattice Bose gas. 
On the other hand, we show that a natural continuum limit of the model is identical 
with the quantum NLS model (the ‘ordinary’ Bose gas [24]) for which [3,5] quantum 
group quantization and canonical quantization are equivalent. 

The paper is organized as follows. After a brief review in section 2 of the algebra 

[23]. For lattices the fundamental object is the ‘local’ operator i , ( A )  (local transition 
matrix) from which the quantum Fonodromy matrices T(A) can be constructed. The 
trace of the monodromy matrix T(A)  is the generating function of the integrals of 
motion (this is true in both the quantum and classical cases [ l ,  31). Thus in section 3 
we give the L.(A) operator of the q-deformed model (i.e. of the ‘q-Bose gas model’) 
and in section 4 we derive the Hamiltonian of the model. The spectrum is found in 
section 5 by means of the algebraic Bethe ansatz (i.e. by the QISM). In section 6 we 
take particular continuum limits of the model and regain the ‘ordinary’ Bose gas of 
[24]. A number of connected problems, notably calculation of the correlation functions 
and critical exponents [25] and investigation of certain bound states, are deferred to 
following papers. 

N M Bogoliubov and R K Bullough 
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nf q-boscns w e  !.E In the sectin. 3 to the q&fonnation af the !mice NLS model 
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2. The q-bosons of the q-Bose gas model 

The q-Bose algebra is generated [13-161 by three elements at ,  a and N ( = N ' ) .  These 
are a q-creation operator at ,  a q-annihilation operator a=(a')'  and the number 
operator N defined to satisfy 

[N, a'] = at [ N ,  a ]  = -a (2.1) 

aaT - qa'a = q-N (2.2) 

and 

where q is a c-number taken here to be q = eiy or  q = e', with Y E  R, a real number 
(we shall not need the general case y E C). 

For q=e' one can construct the representation of the relations (2.1) and (2.2) in 
the Fock space spanned by the normaiized eigenstates of the number operator X in 
the usual way. The q-boson vacuum 10) is defined by 

aI0) = 0 (2.3) 

and the normalized state vectors In) are constructed as usual so that 

N / n ) =  nln)  n = 1,2 , .  . . . (2.4) 

We can put In) in the form [15] 

In) = ([n] ! ) -" ' (at)"1~) ( 2 5 1 )  

in which 

[nl!=[lI ,  PI,. . ., [.I (2.5b) 

where 

[nl-  ( q " - q - " ) / ( q - q - ' )  ( 2 5 )  

and, for q =e'>O, [n]>O. Evidently [n]! defined by equations (2.5b, c) is the usual 
n !  for q +  1 ( y - t o ) .  We shall refer to the notation [n] as the 'box' notation. The 'box' 
notation in [ n ]  is defined by (2 .5~) .  Since, on the Fock space spanned by the In)> (2.2) 
is invariant under q + q-' ,  

(2.6) aa+- q-'a'a = q N 

ata  =[NI- (qN - q - N ) / ( q - q - ' )  (2.70) 

on that Fock space; and it follows from (2.2) and (2.6) that 

and 

aat = [N+ 11 (2.76) 

on that Fock space. In relations (2.7) the 'box' notation is now extended to the case 
of operators, N and N +  1. These several results mean that the Fock space spanned 
by the In), equation ( M a ) ,  forms a natural extension of the normal Fock space In) 
with [n]! replacing n! and [n]  replacing n appropriately. As q +  1 ( y + O ) ,  relations 
(2,1), (2.2) and (2.6) and (2.7) form the usual Bose algebra, N = a ' a ,  and the states 
In), (2.5a) are the usual In). however, we can show, by using the representation of the 
operators in terms of ordinary boson operators, equations (6.14) below, that we can 
also construct the Fock space defined by (2.5a) in terms of ordinary boson states In). 
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For the q-Bose gas model constructed in this paper we use q = ei", y E  R. In this case 
relations (2 .6)  and (2.7a, b )  follow immediately as operator relations. However, for 
n > v y - ' ,  [ n ]  may be <O. We use q =e", O <  y < t w  for the q-bose gas model in section 
5. Then by making an appropriate choice for the representation of the algebra defined 
through (2 .1)  and (2.2) we can still construct the Fock space. Thus there is no problem 
with q = eir  in this regard. Note that the notation which is (2.7a, b) for operators is 
used throughout the paper. 

The quantum enveloping algebra su,(2) of the Lie algebra su(2) is the algebra with 
generators S', S' and relations 

N M Bogoliubov and R K Bullough 

qZS' -q-2s' [S+, s-] = [ZS'] = 
9 - c '  ' 

[S', S'] = F S' 

The su(2) Lie algebra has the well known Primakov-Holstein representation in terms 
of Bose operators. The corresponding Primakov-Holstein representation for suq(2) in 
terms of q-boson operators (2.1), (2.2) is 

S+ = J [ n - N l a  S - = a ' & F R j  S ' = $ a - N  (2.9)  

in which 01 is an arbitrary complex e-number (the notation (2 .5b)  is again used here 
and it will be used throughout the paper). 

For the q-Bose gas we need M > 1 independent, mutually commuting, q-bosons 
a:, a., N .  with n = 1 , 2 , .  . . , M. Relations (2.1) and (2 .2)  now become 

[N",  a',] = a',&,, IN., a m ]  = -a.&. 

and 
ana' , -8 , ,qa~a.  = S,,,.q- N * + ( 1 - 6 , , , ~ ) a k a *  

The normalized state vectors are 

(2.10) 

(2.11) 

and define the extended Fock space. In a continuum limit in which nS + x, a. + v% p ( x ) ,  
0: + v% p '( x)  and N .  + S N ( x ) ,  as the 'lattice spacing' S + 0, one finds from the operator 
relation (2.10) that 

[ P ( x ) ,  P + ( Y ) I  = K - Y )  (2.12) 

together with N ( x )  = p ' ( x ) p ( x )  and equations (2.12) are the usual canonical commuta- 
tion relations. Thus insofar as this result for the q-bosons is generic we expect 
q-quantization to coincide with canonical quantization in a continuum limit-that is, 
we expect the two quantization to coincide for all field theories, linear or nonlinear. 

3. The q-deformation of the quantum NLS model on a lattice 

We consider a periodic chain with M sites. The q-Bose operators a:, a,, PIj forming 
the M independent dynamical variables (2.10) are assigned successively, j = 
1 .2 , .  . . , M, to the sites j; a:+M =a:,  a,,, = a,, NjtM = N,. 
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A most general model of interacting q-bosons on such a lattice can now be 
introduced through the following i.-operator: 

where the notation (2.56) is again used. In & ( A ) A E @  is a spectral parameter and 01. 

is a complex number which in general $1 depend on the lattice site (now labelled 
n). Reference to  [221 shows that this L.-operator can be considered to be the q- 
deformation of the i.-operator for the quantum nonlinear Schrodinger model on a 
lattice (QLNS model). When q +  1, (3.1) becomes exactly the &operator of the QLNS 

model. 
Alternatively, (3.1) derives from the i.-operator of the XXZ Heisenberg chain of 

arbitrary spin 126,271: 

(3.2) 

(U' is a Pauli matrix) by making the Primakov-Holstein transformation (2.9). Although 
S:, Sz ?re elements of the quantum group su,(2) they arise naturally in the definition 
of the L.-operator of the XXZ magnetic chain of arbitrary spin and these chains have 
the usual canonical quantization. We shall report on this situation elsewhere. 

As is generally the case in the QISM [1-3] the i.-operators (3.1) or (3.2) are 
intertwined in terms of an R-matrix: one finds, with 0 meaning Kronecker product, 
that 

R(A-P)~ . (A)o~ . (P )  = ~ . ( c L ) o ~ , ( A ) R ( A - P )  (3.3) 

where R(A,p) ( = R ( A - @ ) )  is the same for either (3.1) or (3.2) and is given by 

0 

This is a trigonometric R-matrix (the XXZ R-matrix) with 

This R-matrix depends on q and becomes the rational R-matrix of the QLNS and 
continuum quantum NLS models only when q+ 1. 

We shall make use of the following properties of the 6-operator (3.1): 

Ln(-A) = o l k ( A ) m l  (3.6) 

e8"min(A) e@'= e@-'i,(A) eDNn (3.7) 

in which the U' are Pauli matrices, N. ',s defined by (2.10) and p is a c-number. We 
a!so need :he qGanyGz dete:z-inant of L"p.! %hid! Is defi.ned [2j thrC!l!ph 

iDet,i.(A)=i,(l)u2i:(A f i b 2  

where i is the unit matrix. 
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We can now trace out the usual steps of the QISM [l-31. The quantum monodromy 
matrix ?(A)  is introduced as 

? ( ~ ) = f i  i n ( ~ ) = L M ( ~ ) . .  . i*(~)i,(~) 
n 

(3.9) 

The commutation relations of the elements A, B, C, D of ?(A)  are then given by 

R ( A  -P )? (A)o~(P)  = f ( p ) o  ? ( A ) R ( A - ~ )  (3.10) 

a result which follows from (3.3) and (2.10) and the commutativity of the elements of 
the in-operator at the different lattice sites (see (2.10)). The significant quantity (under 
the chosen periodic boundary conditions) is the matrix trace of the monodromy matrix 

& h ) = T r  ? ( A ) = A ( A ) +  D(A).  (3.11) 

The matrix trace of (3.10) means that 

[&A),  &P)I = O  (3.12) 

and (A, @ E  C )  there is a large number of mutually commuting operators A ( A ) ;  the 
model is therefore quantum integrable. The Hamiltonian of the model, fi, can be 
represented as a linear combination of the derivatives of J/JA(ln A(A))  at some set of 
fixed poin!s A = v,. It follows from (3.7) that & A )  commutes with the total number 
operator N :  

M 
[$A), f i ] = O  f i = x  4. 

j = 1  
(3.13) 

The number operator fi therefore commutes with the Hamiltonian of the model 
[fi, fi] = 0. 

4. The lattice q-Bose gas 

We now construct the Hamiltonian of the integrable q-boson lattice model ('the q-Bose 
gas') which can be considered to be the q-deformation ofthe QLNS [22,23] as explained. 
We rec;all that q = eiy or q = e'/ with Y E  R. 

If H is to be Hermitian we need to evaluate J/JA(ln A ( h ) )  at fixed points v, and 
at v;,  their complex conjugates. A calculation of ?(A), (3.9), using the f,(A) of (3.1) 
in which the c-nynbers a2 do not specifically Pepend on the site n, leads to a 
npn-factorizable A ( h )  f Tr T(A),  a non-local J(ln A(A))/JA at A = U: and a non-local 
H-simply because operators at the same site do  not commute. The same problem 
arose in the undeformed QLNS model and it is sufmounted by distinguishing the odd 
and even lattice sites. We therefore set a. in the Lo-operator (3.1) to -a. =A+(- l )" .  
The homogeneous, i.e. independent of the lattice site n, parameter AEW (A>O),  and 
it will prove (section 6) to have the sense of an inverse lattice spacing 6-I. We therefore 
choose 
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in which 

pn = J[ N. + (-1)" +A]  (4.2) 

The quantum determinant of this in-operator is 

f Det,i.(A) = -([iA -iu$"][iA -iu$")])f (4.3) 

(4.4) 

where 
1 - - - ' I  l%(A+(-l)") -. ~ ( l - i ( A + ( - l ) " ) ) .  

The Hamiltonian fi is found as a linea; combination of the derivativesof In & A )  = 
In Tr ? ( A ) ,  equation (3.11). We express H in terms of lattice densities H.: 

and we shall call f? local if its densities k,, depend on the dynamical variables a:, a,, N, 
in a certain neighbourhood of ',he nth site ( n  - m )  s j -z n + I ,  ( m  + I )  <a. This Hamil- 
tonian then describes in each H, a direct interaction between ( m + l +  1) neighbours. 

The locality of fi is guaranteed since [22] the i.-operator (and therefore T(A))  is 
propoftional to the ID  projectors at the points Y = U',"', v:'"', (up ' ,  v;'"') of (4.4) where 
Det, in@) vanishes. i o  be more precise we introduce a two-component coiumn vector 
g whose components g , ,  g, are quantum operators. At the odd sites, where n = 1 
(mod 2), 

g , ( n )  = -ia'. gz(n) =J[Nn + A -  11 (4.6) 

at the even sites, where n = O  (mod l ) ,  

We pick out the point 

A y = -iL( z A-1) (4.8) 

where Det, Ln(A), equation (4.3), vanishes, to see that at these odd sites the in-operator 
:- 'A:---+, --,.:an+,.- . . z i + h  n l e m m - t r  
1D L U G  "IIGL, p Y , L ' L Y L  W.L.. C.C..I*.IL.I 

( L ( U ) ) i k  = gi(n)g:(n) i, k = 1,2 (4.9) 

while at the even sites it is this projector in reverse order 

( L " ( V ) ) , k  =g:(n)sdn) i, k = 1,2. (4.10) 

(Eyi<ent!y if wc ifitmdcce the ro!cfin v p d ~ r  g = (w , g;jT and_ !he scalar pmdfic.! 
( g ' g )  = gAig, +&, gtg: is a projector up to normalization in the sense that fag  = 

g(g'g) ,  L2.g = g(g'gY, etc.) 
The point A = U* is a conjugated zero of Det, f , , ( A ) :  

U* = - U  = &A-1). (4.11) 

Thus the i,-operator is the reverse-order projector on the even sites with elements 

( i n ( U * ) ) i k  = (g'(n)v')<(u'g(n))k i , k = l , 2  (4.12) 

(U' is the Pauli matrix) and at the odd sites it is the direct projector 

( i n ( Y * ) ) i k  = ( u ' g ( n ) ) k ( g t ( n ) u ' ) i .  (4.13) 
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We assume that the number M of poi+ in one period of the lattice is even. By using 
(4.9) and (4.10) in (3.9) we find that A ( u )  is given by 

&U) = (g t (M)g(M - 1)) n Ikt(2n)g(2n - 1)j(gt(2n + 1)g(2n))}(gi(1)g(M)) 

N M Bogoliubou and R K Bullough 

JM-l 

" - 1  

(4.14) 

which is factored (the parent$eses.indicate the scalar product (g'g) = (gigl +g:g,)). 
The generating function for H, In A( v ) ,  is therefore 

The first derivative of In & A )  at A = v 

a ,. -i2 In q 5 
-(in A(AJJ~*=.=- -, t 1". 
JA 4 - 4  " = I  

G ( ~ )  = w3{qNn+l(1-m')lA-l)+ 4 -Nm-J( l -o ' I iA- l )  1 

can prove that 

n = 1 (mod 2). 
A similar expression for a(ln &(,+))/ah will arise at A = U* which is also local. One 

a(1n A(A)/JA)~, ,= . .  = [a(ln &A)/aA)ln=,l' 

= -Pa(ln A(A)/aA),=,P. (4.21) 

(4.15) 

(4.i6j 

(4.17) 

(4.18) 

(4.19) 

(4.20) 

In the third expression P is the operator of space reflection. 
II , 

We can now define the Hamiltonian of the model as follows: H Ho where 

+2fi/[fA+l][fA-l]. (4.22) 

In this fi is the total number operator (3.13). f i = Z c l  N,, and A,(A) is & A )  in the 
absence of any fields, namely 

A,(A) = ([;(A+ 1) -ih j [ f ( ~ -  1) - i ~ l j " ~ ' +  ([;(A+ 1 j+ ih  j[&i - i ) + i n  J)-,-. (4.23) 

In this way we have constructed the Hamiltonian in terms of the original q-Bose 
fields. It is local in the sense of (4.5) and is given finally as 

I?,, = -E (f,, + f:+2[2A- l]/[A][A- 11) +2fi/[4(A+ l)][;(A- l)] (4.24) 

- . U , ,  
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in which in is defined by (4.17) and (4.18). It is Hermitian and, as the expressions for 
f,,* show, involves the direct interactionAof four neighbours on the lattice. Since 
[Ho, N] = O  we can consider fi = Ho-ph’ where is the chemical potential; p>O. 

5. Solution of the model 

We can solve the model for its eigenenergies and eigenstates by means of the algebraic 
Beth: ansatz (QISM [l-31).  The state which is annihilated by the lower left element of 
the L.-operator is called the pseudo-vacuum: it is clear that this state IO). of the model 
is the q-Bose vacuum (2.3): a,10)=0. The g:nerating pseudo-vacuum, namely the 
vacuum eigenstate of the monodromy matrix T(A) (3.9), is then the state 10) of (2.11): 

with in given by (4.1). The vacuum eigenvalues of the elements of ?(A) appear as 

A(A)lO)= (a(A\))’’210) D(.\)lO) = (d(A))‘’*lO) C(A)lO) = 0 

in which 

a(A)=[~(A+l) - iA\IC~(A-l ) - iA]  

d(A) = [$(A+ l)+iA][i(A- l)+iA]. 
(5.2) 

The N-particle eigenfunctions of &A) =Tr ?(A) are taken to be of the form 
N 

l @ ~ ( { A i } ) ) =  Il B(Aj)lO) (5.3) 
J = l  

and the N allowed ‘wavenumhers’ Ai satisfy the system of Bethe equations 

(5.4) 

in which f is the element of the R-matrix (3.4) defined in (3.5) and depends on q. The 
eigenvalues O N  of &A)  corresponding to these eigenfunctions are 

and 

&/~)l@,v({A,.l)) = @ N ( / L .  { A j j ) l @ ~ ( { A j ] ) ) .  (5.6) 

The eigenfunctions (5.3) are simultaneous eigenfunctions of the momentum operator 
P [2]: 

with 

p(A)=iIn(u(A)/d(A)). (5.7) 
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Since a ( A )  and d ( A )  are given explicitly by (5.2) and f is defined by (3.9, the 
Bethe equations (5.4) finally take the form 

while the eigenvalue ON is 

The eigenvalue p ( A )  of the momentum ?? is 

A +  1) -iA][f(A - 1) -iA] 
[+(A+ l)+iA][f(A - l)+iA] 

p (  A )  = i i In { [-( 

(5.8) 

(5.9) 

(5.10) 

- i p ( A , ) M  . and - m S p ( A ) < m ,  so e 

fiO finally given in (4.24): 

IS equal to the right-hand side of (5.8). 
The eigenfunctions (5.3) of & A )  are necessarily eigenfunctions of the Hamiltonian 

(5.11) 

and 

(5.12) 

This follows from the definition (4.22) of fiO together with the explicit form (5.9) of 
the eigenvalue ON. Then by evaluating the derivatives at p = U* and p =  U in (5.12) 
we find the one-particle dispersion relation h(A) to be 

h(A) = -l/[%i+l)-iAl[i(A- l)-iA] -l/[i(A+ I)+iA][t(A-l)+iA] 

+2/[i(A+ l)][t(A - l)]. (5.13) 

In order to make contact with the QNLS model [22,23] in this paper we now choose 
q =e" ( y  E W) only: the case of q = e' will be analysed elsewhere. Since (5.8) is invariant 
underA+ A+im/y (i.e.itisperiodicofperiodimy-') weidentify point s A  andA+ina /y  
in the complex plane ( n  is an  integer -m<n <+CO). Equation (5.8) then possesses 
solutions with both real values A E R ,  and complex values, A+if?ry+i/Z(m -21+ I ) +  
O(e-"), l = l ,  ..., mZ=l,AEW. The solutions A c R  and A+ia/Zy, A G R  correspond 
to elementary excitations; the remaining complex solutions correspond to m-particle 
clusters. For the elementary excitations the first two terms of h(A) are & ( A )  where 

(5.14) 

and A E W  (upper signs in (5.14) and A+A+i~my-l with AER (lower signs in (5.14)). 
We can choose A >  1, a choice consistent with the interpretation that A is essentially 

4(cosh 2yA cos yAFcos y) 
(cosh 2yA cos y s c o s  y)'+sin2(yA) sinh2(2yA) 

-- - *  L ( A )  
sin2y 
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the inverse lattice spacing: this choice ensures that the third term of (5.13) is positive. 
Finally we choose 

1 < A < f?ry-' O<y<f?r  (5.15) 

which restricts us to the Bose gas model. Other choices remain for further studies. 
For A E R  and the case of upper signs in (5.14) E+(A) is minimum at A = 0 and 

E+(O) =E+ < 0: E+(A) rises to two symmetric maxima where E+(A)  > 0 and then falls 
symmetrically and monotonically to zero as IA l+  00. In  the second case (lower signs 
in (5,14)), E_(O) = E- < O  rising symmetrically and monotonically from this minimum 
to zero as IAI-tm. Evidently 

4 sin2y -4 sin'y 
E+ = E _  = (5.16) 

COS yA - COS y cos yA + cos y 

and there is the gap 

8 cos yA sin'y 
s iny(A+l)s iny(A- l )  

ro=E--E+= . > 0. 

The third term in h ( A )  is 

4sin2y 
Z/[$(A+l)]&A-l)]  = -E+= - > O  

COS yA -COS y 

(5.17) 

(5.18) 

so there is the acoustic branch of h ( A )  for which h ( O ) = O ,  h ( A ) > O  ( A # O )  and 
h ( A ) + - E + > O  as IAl+m. Then there is the second, optical, branch for which 
h((i/2)?ry-') =ro>O, h(A+(i/2)ny-')> To (A Z 0) and h(h+(i/2)ny-')+ -E+>O as 
( A I  + m. The gap To thus defines the energy of a fundamental particle of the theory 
which we can call the optical q-boson. The existence of the optical branch in the 
spectrum h ( A )  is exceptional to the q-boson model: neither the QLNS model nor the 
continuum quantum NLS model has an optical branch. In  the 'box' notation the gap 
To is 

(5.19) 

The remaining solutions h + i f ~ y ~ ' + i f ( m - 2 l + l ) , m ~ 2 ,  / = I ,  ..., ~ , A E W  corres- 
pond to the m-particle clusters. The periodicity of (5.8) with period iny-' puts a bound 
on the integer m: q- 1 <my-'. The energies of the m-particle clusters prove to be 

sin ym sin y 
cosh y(A + $(A+ m)/2]) cosh y(A +i[(A- m)/2]) 

h,(A)= - 

sin ym sin y 
cosh y(A-i[(A+m)/2])cosh y(A-i[(A-m)/Z]) 

- - mE, (5.20) 

so h , ( A )  is the energy of the optical q-boson. Evidently the energies h,(A)(m 3 2 )  lie 
above h, (A) .  It can be proved that the m-clusters with m < ~ / 2 y  form a breather-like 
spectrum. For, for m < rr/2y, the m-clusters are m-particle string-like states forming 
actual hound states of m q-bosons. All details of these bound states will be given in 
a following paper. 

taken in 
thermodynamic limit M +oo is constructed by  filling the states with negative energies. 
We must distinguish two cases-the case of low density and the case of high density. 

The ground state of the model which has the Hamiltonian I?= 
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In the low-density limit the ground state of the model consists of one Fermi sphere. 
There are two main branches of the excitation spectrum, the acoustic branch of gapless 
q-bosons and the optical branch. The optical branch consists of q-bosons with the 
bare gap 
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(5.21) 

in which f i  is the chemical potential and OS# t r o ,  and there are the bound states 
with the bare gaps exceeding r. 

The high-density limit has &>To .  It consists of several Fermi spheres, one filled 
by the acokstic q-bosons, the others filled by the optical q-bosons and by the clusters. 

Thk existence of the several branches of the spectrum is the main difference of the 
q-Bose gas model from the QLNS and Bose gas models [23,24]: it leads to some changes 
in the detail of the asymptotics of the correlation functions [25] although the main 
features of these are the same since these correlations do not distinguish discrete and 
continuous models. The latter is obtained in the q + 1 ( y  + 0), A = 4/c6, A + Ac-', 6 + 0 
scaling limit as expected since the q + 1 ( y  + 0) limit is the QLNS model. However, the 
result (2.12) shows that the lattice Bose gas must have a continuum limit which is the 
Bose gas found directly. These two limits are investigated in section 6. 

6. Continuum limits of the model 

We first take the q+ 1 (y+O) limit and regain the QLNS model [22,23]. When q + 1 
the commutation relations (2.10) become those of ordinary bosons, [p., pk] = S., and 
N. = p'.p.. For a subsequent continuum limit S + 0 we put A = 4( cS)-l and A + Ac-', 
c>O, so that the L.-operator (4.1) is 

] (6.1) 
-im p'.p. 

(1 + (-1).+c6 +tcSN, +$A&) SC 

with 

p. =Jl+$(-l)'c8 +:cSNm. 

But this is exactly the i.-operator of the QLNS model introduced in [22]. 
The q + 1 limit immediately replaces f (p ,  A )  and g(p,  A )  equations (3.5), by 

(6.2) 

(we put A, p+ AcC', pcCi in (3.5)) so the R-matrix (3.4) becomes the rational R-matrix 
of XXX type. Evidently the Hamiltonian Ho becomes that of the QLNS model of 1231 

&= -4(3cS')-' 1 (in+ f'+(8 -&)(8-2cS)-'}+4(3S2)-'(l -$2Cz)- 'f i .  (6.4) 

The in are now, for odd sites n = 1 (mod 2) ,  

in =(gt(n+2)g(n+l))-'((g'(n)g(n- l))- '(gt(n+l)g(n))- '  

M 

n = i  

x fg+(n + - i)))(g'(n + a g ( n +  1)) (6.5) 



g:(n)  = (N" +4c-I8--1)-1'2 

g,(n)=-iPL 

gdn)  = -i& 

for n = 1 (mod 2), and 

for n = O  (mod2). 
The dispersion relation is 

h(A) = 4(362)-1{(6'A'+ ~'6'- 

h ( 0 )  = O  and there is only one branch and no gap. The momentum is 

and the Bethe equations are 

,+I  Al-Aj+ic . 
(1 -+e6 -$SAl)( 1 ++c6 -$6A,) ) M'2 = fi (Al-Aj-ic 
(1 -&cS ++iSA,)(l ++cS +fish,) ,=, I 
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6 ) - ' }  (6.9) 

(6.10) 

(6.11) 

All of these results coincide with those of the QLNS model 2231. Equations (6.11) 
possess only real solutions. 

As shown in [23], in the continuum limit S-rO with x =  nS, L = M S  and a:+ 
a f i ' ( x ) ,  a n + f i j 3 ( x ) ,  the Hamiltonian (6.4) becomes exactly that of the repulsive 
quantum NLS model (the Bose gas) with coupling constant c> 0, namely 

fisG=j (a ,p ' (x )a ,p (x )+cp t (x )P t (x )p (x ) j3 (x ) }dx .  (6.12) 

Likewise equations (S.S)-(S.lO) take the Bose gas forms 1241 h ( A )  =AZ,p(A) = A, and 

e-iL*,= n (Al-A,-ic) 
j t r  (A, - A j  +ic)'  
j-1 

(6.13) 

The continuum limit just taken on the QLNS model, results (6.4)-(6.11), also takes 
thecommutation relations (2.1) for Mq-bosom to (2.12), theusual canonicalcommuta- 
tion relations for bosons. It can be shown that in this limit the q-Bose gas Hamiltonian 
(4.24) turns directly into the Bose gas Hamiltonian (6.12). To investigate this limit it 
is useful to  use the representation of the q-bosons a., a'. (2.10) in terms of ordinary 
bosons p., p:, for which [p ,  pk]=S.,.  The representation is 

(6.14) 

In the same limit the R-matrix (3.4) must become the R-matrix of the Bose gas (6.3) 
and this is the q + l  (y-rO) limit of (3.4). But by restricting attention to the range 
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(5.15) for A we set A=4(c6)-' and y +  76. By multiplying the f-operators (4.1) from 
two adjacent sites, we see that when S+O, the infinitesimal L-operator is 
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i ( x )  = f"+,f" = 1 - 6 i ( x ) + O ( S 2 )  (6.15) 

where f ( x )  is the Lax operator for the continuous quantum nonlinear Schrodinger 
model (the Base gas) [28]: 

f ( x )  = 

Moreover since y +  6y  as 6+0, the R-matrix (3.4) turns into the R-matrix (6.3). 
It follows that all details of the q-Base gas model reduce to all details of the Base 

gas in the natural continuum limit. This includes the dispersion relation which becomes 
h ( A )  =A2, and which has a single acoustic branch and is gapless. 

7. Summary and conclusions 

We have constructed the Hamiltonian f i 0  (4.24) of the quantum integrable q-Base gas 
model and solved it for its eigenstates (equation (5.3)) and eigenvalues (equation 
(5.11)) which are defined through the dispersion relations !?(A), equation (5.13). We 
have used the method of 'projectors' [22] to calculate Ho, but there exists another 
approach, based on the notion of the fundamental R-matrix [29]. We shall return to 
this alternative approach in another paper. The advantage of the 'projector' method 
is that the Hamiltonian (4.22) which is obtained is formulated in terms of initial local 
q-Base fields. 

The main physical result of the paper is that the q-deformed boson model has both 
an acoustic branch and optical branches in its spectrum. The second result is that, as 
projected from the 'continuum limit' of a set of M q-bosons, the S+O continuum limit 
of the q-boson model is the repulsive nonlinear Schrodinger model (the Base gas). 
We believe this exemplifies the position surrounding continuum field theories-namely 
that quantization of these by canonical or by quantum group quantization leads to the 
same quantum field theory. This is not necessarily true for the discrete models with a 
finite number or a countably infinite number of degrees of freedom, and the q-deformed 
boson (q-boson model) solved in this paper exemplifies the latter. Calculations for the 
correlation functions of the q-Base gas model treated in this paper will be reported 
in a following paper [E]. Finally we note that the R-matrix (3.4) is the R-matrix of 
the sine-Gordon model as given in [22]. Thus we can expect to derive the related 
quantum sine-Gordon lattice model. This investigation will be reported elsewhere, 
while details of the string-like bound states (section 5) will also be given in a following 
paper. 
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